

Nb₃Sn Quadrupole Development at Fermilab

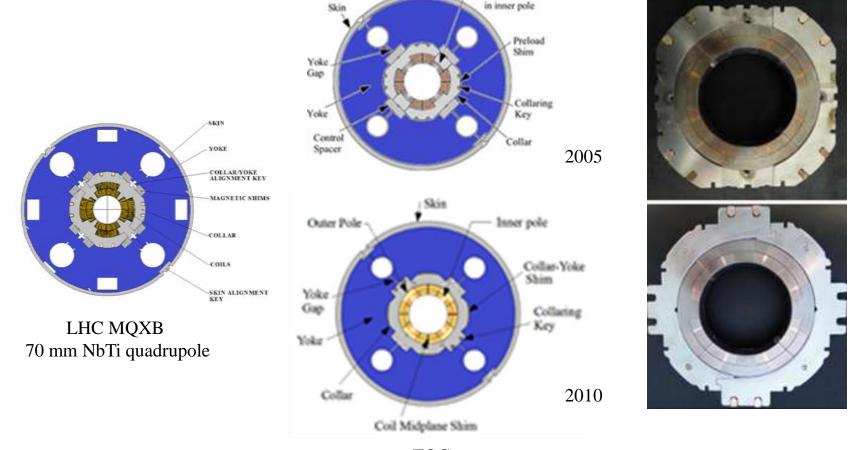
Alexander Zlobin

Technical Division
Fermilab

Introduction

Fermilab is developing a new generation of accelerator magnets based on Nb₃Sn superconductor - High Field Magnet (HFM) program

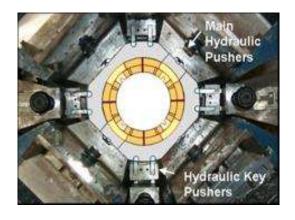
- o LHC luminosity upgrade
- o Muon Collider Storage Ring


New recent results

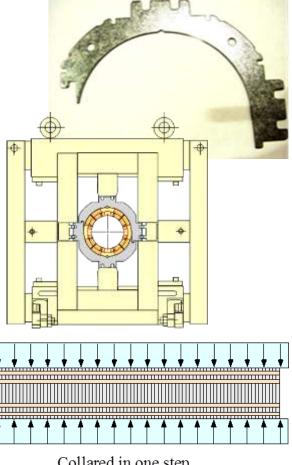
- o Assembly and test of the 2nd Nb₃Sn quadrupole model (TQC03E) with RRP-108/127 strand, dipole style collar and coil alignment
- o Test of 4 m long Nb₃Sn quadrupole coil in a quadrupole mirror structure

This work was performed in support of US-LARP

TQC Model Design


TQC 90 mm Nb₃Sn quadrupole

- * TQC: 90 mm two-layer coil, 27-strand cable
- Mechanical structure: modified MQXB

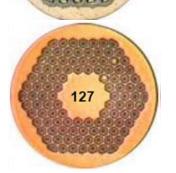


Quadrupole Coil Collaring

Press Platen High stress point Collaring Direction -

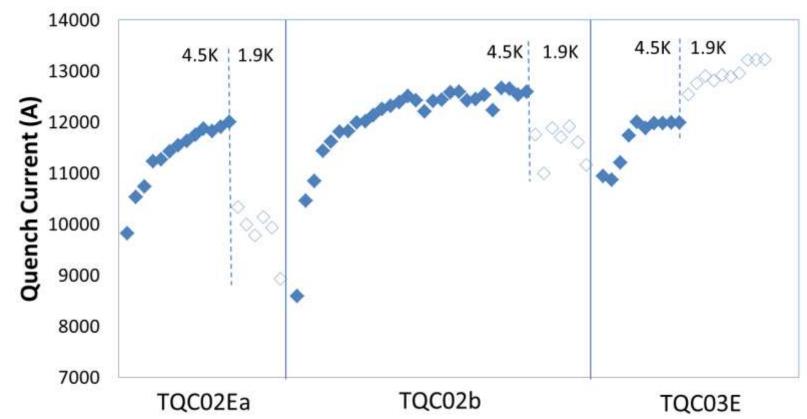
Collared in one step

- Time consuming process for Nb₃Sn magnets with many (~6-8) passes and some risk of damage to coils
- Collaring with a single pass reducing coil degradation risks and construction time (<1 week)

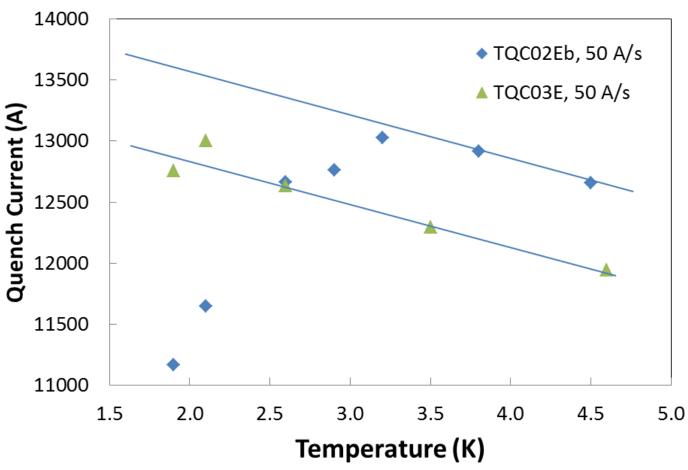

Design Features and Test Objectives

Model	Strand				Coil	
	design	D _{eff} , um	Coils	Collar	prestress, MPa	
TQC02Ea	DDD 54/61	~60-70	20 ,21,22,23	Q	-112	
TQC02Eb	RRP-54/61		20,22,23, 28	D	-124	
ТОСОЗЕ	RRP-108/127	~40-50	30,31,32,33	D	-124	

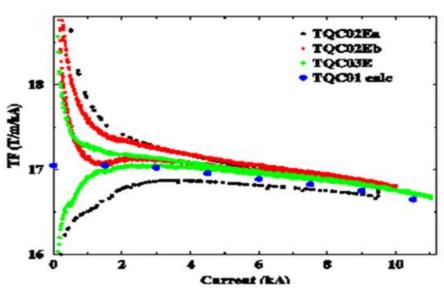
All coils were fabricated by FNAL/LBNL and previously tested in LARP TQS models

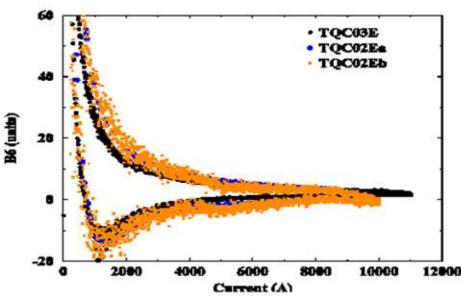

Objectives

- * RRP-54/61 vs. RRP-108/127
- D-style collar vs. Q-style collar
- **Performance reproducibility**
 - o Quench performance
 - o Field quality

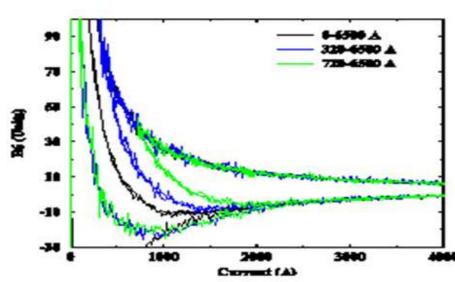

Quench Training

- Similar quench performance for Q and D collar structures
- * All magnets reached their conductor limit
- Stable performance with RRP-108/127 strand at 4.5 and 1.9 K
- Multiple coil handling and test cycles => robust technology


Temperature Dependence



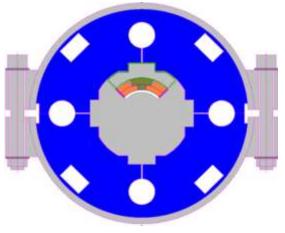
- * TQC02Eb: "Flux jump" instabilities at T<3.5 K
- **TQC03E:** stable performance at all temperatures



Magnetic Measurements

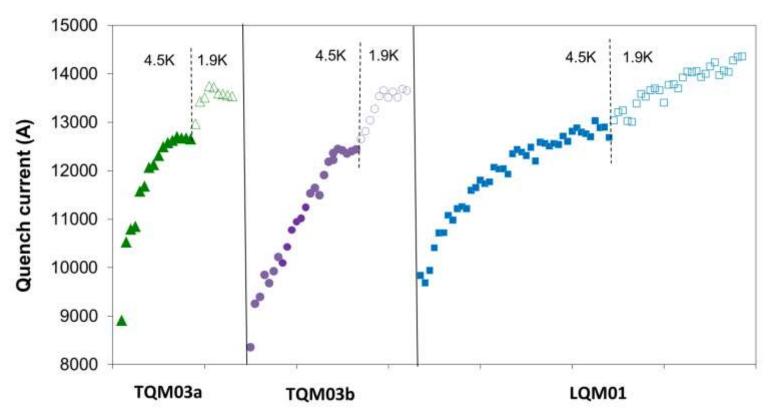
- ❖ Iron saturation effect is small and consistent with calculations (TF and b₆)
- ❖ Coil magnetization is large in Nb₃Sn magnets due to high J_c and large D_{eff}
 - Smaller D_{eff} => smaller hysteresis
 - o Cycle optimization

Field Harmonics


n	b _n			$\mathbf{a_n}$			
	02Ea	02Eb	03E	02Ea	02Eb	03E	
3	-2.56	-3.57	-0.5	1.72	4.71	-2.64	
4	-1.65	-3.34	0.19	-2.7	-0.29	-2.81	
5	0.72	0.20	-0.03	1.61	-0.76	2.21	
6	-0.96	-0.62	0.72	0.59	0.05	-0.36	
7	-0.34	0.03	-0.06	-0.32	0.10	0.18	
8	0.14	-0.07	-0.06	-0.07	0.01	-0.08	
9	0.06	0.06	0.14	0.12	-0.02	0.01	
10	-0.08	0.01	-0.02	-0.01	0.02	0.08	

Low, reproducible field harmonics

<u> 4 m Long Coil Test</u>



00000000000000

- *** Objectives:**
 - o 90-mm Nb₃Sn coil technology scale up
- Quadrupole mirror based on TQC quadrupole structure
 - o Field and force level and distribution similar to real quadrupole
- Quadrupole coil made of RRP-114/127 Nb₃Sn strand
 - o Cable was fabricated at FNAL

LQM01 Training

- * TQM: 1 m long quadrupole mirror
- LQM: 4 m long quadrupole mirror
- Cable and coils were fabricated at Fermilab

All coils reached their SSL at both 4.5 and 1.9 K

Conclusions

- ❖ RRP-108/127 strand demonstrated stable performance at both 4.5 and 1.9 K => this strand replaces RRP-54/61 strand as a baseline conductor for Nb₃Sn magnets in U.S.
 - o Strand was developed by FNAL/OST collaboration
- Dipole style collar design and collaring process were successfully tested at Fermilab using 90-mm Nb₃Sn TQ coils
 - o More efficient, less risky process
 - Quench performance and field quality are consistent with the test results for models based on the traditional quadrupole collar structure
 - Dipole style collar structure can be easily adopted for long Nb₃Sn quadrupole (and dipole) magnets => important for LARP and LHC upgrade needs
- ❖ 90-mm quadrupoles of TQC series developed at Fermilab have all features of accelerator magnet and could be considered for use in real machines
 - o G_{max} =220 T/m (B_{max} ~12 T) => higher with better conductor
 - o Good, reproducible quench performance and field quality
 - o Scalable length